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1. Motivation and Research Objectives

• EM disturbances from natural/man-made sources can change data

values on digital buses/memory and CPU instruction execution.

• Atmospheric neutrons passing through solid-state devices can cause

single-event upsets (SEU’s).

• SEU’s are soft errors, i.e., they are transient and nondestructive to

the hardware. Their effects have only been studied at the chip level.

• Both types of upsets can degrade the quality of the control signal

and have an aggregate effect on closed-loop performance.
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Research Objectives

• To develop tractable hybrid models of distributed flight control

systems integrating the appropriate features of the fault-tolerant

computing platforms and communication system.

• To analyze the corresponding flight control system performance

degradation caused by High Intensity Radiated Fields (HIRF)

environments and atmospheric neutrons.

• To develop a design methodology for distributed flight control

systems that takes advantage of the fault-tolerant communication

system services and mitigates the effects of digital upsets.

• To validate the effectiveness of a designed distributed/recoverable

flight control system in three environments:

- simulated hazardous environments

- HIRF environments

- neutron environments.
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2. Hypothesis, Milestones and Technical Plan

Primary Hypothesis

Computationally distributed flight control systems using robust

communication networks and recoverable computing platforms provide

practical, predictable and superior control performance in harsh

environments.

Relevant IVHM Milestones†

1.2.4.1 Validated models of flight computer component failure, damage

characterization, damage mitigation, and impact on flight safety.

1.3.4.1 Implement and benchmark algorithms to support reconfiguration,

recovery, and redundancy management.

†ASP IVHM Technical Plan, Version 2.0
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2.1.2.1 Validated methodologies and tools for the diagnosis of failures

associated with aircraft components and subsystems implicated by the

adverse events.

2.1.3.1 Validated methodologies and tools for the prognosis of failures

associated with aircraft components and subsystems implicated by the

adverse events.

2.1.4.1 Mitigation of flight computer and actuator failures and damage,

and recovery from transient effects on flight computers with complex

architectures, smart sensors, and actuators.

3.4.1 Establishment of minimum performance criteria of candidate

mitigation strategies at the subsystem or component level for selected

conditions.
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Technical Plan

Phase 1: System Design Which distributed control architectures are

inherently the most reliable and give the best control performance in

harsh environments?

Phase 2: Performance Models and Prediction Synthesize predictions of

closed-loop performance for specific HIRF and neutron environments.

Phase 3: Test in Simulated Hazardous Environments Using a ROBUS-2

implementation of the best design, inject fault patterns to simulate

HIRF and neutron environments.

Phase 4: Test in a HIRF Environment Test implementation in HIRF

chamber at LaRC.

Phase 5: Test in a Neutron Environment Test implementation in neutron

beam at Los Alamos Neutron Science Center.
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3. Technical Progress

3.1 Design and Analysis Methods

Objective: Identify a specific network topology for a distributed/

recoverable flight control system which gives the best closed-loop

tracking performance when random upsets are injected into the

computing platform.

• Each processing unit is recoverable within one control cycle.

• The same control law is replicated on each processing element.

• Each processing element is fail-silent with 100% coverage.

• A voter determines the actual control command applied and is not

subject to upset.

• Inject i.i.d. upset disturbances into all processing elements.

• Use a linearized Boeing 747 model with a straight/level flight

control law and subject to light Dryden wind gusts (1 ft/sec).
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An Illustrative Example
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Fig. 1: Dual Processor Element (PE) platform with dual Redundancy

Management Units (RMU’s). Bus Interface Units (BIU’s) connect the

PE’s to the communication system.
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Fig. 2: A conceptual view of the performance model for the distributed

flight control system.

The performance index of interest is the mean power in the output

tracking error

Jw = lim
k→∞

E{‖ye(k)‖2}.

To compute Jw analytically it is essential to understand the statistical

nature of the voter output zv(k).
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What is known at present about the stochastic nature of the

communication model:

• Internal states, e.g., zi(k), are first-order homogeneous Markov

processes.

• The inputs to the voter, ỹij(k), and the voter output, zv(k) are not

in general Markov processes.

• For the class of upset disturbances under consideration, however,

these process are well approximated by homogeneous Markov chains.

The corresponding transition probability matrices can be computed

analytically.

• The stationary probability P{zv(k) = 1} can also be computed

analytically.

Key Observation: In most cases, the need for more than 2 RMU’s in a

given system configuration can not be justified on the tracking

performance criterion alone.
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10
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of PE’s and as a function of the number of RMU’s.
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Key Observation: Since the voter output can be approximated as a

homogeneous Markov chain, it is possible to compute estimates of Jw

analytically using theory for Markov jump-linear systems.

Table 1: Theoretical and simulated (via Monte Carlo methods) values of

Jw for two dual PE systems.

# of theoretical simulated

RMU’s Jw Jw

1 7.5139 7.6908

2 1.6977 1.6700

Remark: If the network in the simulator is entirely replaced with a

first-order homogeneous Markov chain (i.e., five lines of code), the

change in observed tracking performance is negligible!
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Fig. 4: Simulated tracking error, E{‖ye(k)‖2}, and Jw for a dual PE

system with one RMU.
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3.2 Fault Injection Experiments
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Fig. 5: Conceptual view of a SAFETI Lab simulated fault injection ex-

periment.
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Fig. 6: Closed-loop flight simulator using measured upset disturbances.

Methodology:

• Plant and controller PE’s will not run dynamical simulation

software, but only emulate the transmission of data packets.

• Test controller will enforce the fail-silent fault injection assumption.

• Use FLTLAB 747 simulator to integrate off-line the measured

communication system model, the autopilot and the Boeing 747.
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Fig. 7: Year 3 (2009) HIRF test of distributed control system.
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Fig. 8: Year 4 (2010) Los Alamos neutron test of distributed control sys-

tem.
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